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Abstract

Recent results at 1 THz using normal-metal tuning circuits have shown that SIS mixers

can work well up to twice the gap frequency of the junction material (niobium). However,

the performance at 1 THz is limited by the substantial loss in the normal metal films. For

better performance superconducting films with a higher gap frequency than niobium and

with low RF loss are needed. Niobium nitride has long been considered a good candidate

material, but typical NbN films suffer from high RF loss. To circumvent this problem we

are currently investigating the RF loss in NbTiN films, a 15K Tc compound

superconductor, by incorporating them into quasi-optical slot antenna SIS devices.
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I. Introduction

There is a strong astronomical interest to construct sensitive heterodyne receivers above

700 GHz, which is the bandgap energy of niobium. Niobium is the material of choice in

nearly all Superconducting-Insulating-Superconducting tunnel junction (SIS) mixers.

Niobium has a bandgap energy of (2A) of 700 GHz. Above this frequency the photons

have enough energy to break Cooper pairs within the superconductor. This results in a

very steep increase in the absorption loss of niobium films, as is shown in Figure 1. To

circumvent this problem, up to 1.2 THz at least, we are developing quasi-optical SIS

devices with NbTiN films[l]. Many of these devices show I-V resonances up to 1 THz,

indicating that the loss continues to be low up to the gap frequency ( 1.2 THz).

Comparison of circuit simulations and FTS measurements indicate that the resistivity of

the NbTiN just above Tc is about 60 btfa-cm, which computes to a phase velocity of 0.2 lc

for NbTiN microstrip lines with a 200 nm SiO dielectric. The critical temperature of the

NbTiN films is around 15K and the gap voltage about 5.2 inV. Several different devices

have been tested up to 650 GHz, all of which can be categorized in the following three

groups.



-NbTiN groundplane,Nb wiring and Nb/AI-O_fNbjunctions

-NbTiN groundplaneandwiring, NbTiN/MgO/NbTiNjunctions

-NbTiN/Nb groundplaneandwiring, Nb/A1-N]NbTiN junctions
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Fig. I RF loss of microstrip lines made with several different materials.

II. NbTiN Ground Plane, Nb Wiring and a Nb/AI-Ox/Nb Junctions

Since we did not know the material properties (mechanical and electrical) of the NbTiN

superconducting films, we first fabricated double slot antenna devices with an existing

mask designed for niobium [1, 2]. The devices had a NbTiN ground plane, Nb/AI-Ox/Nb

junction, and niobium wiring. We have made direct detection Fourier Transformer

Spectrometer (FTS) measurements and hot/cold heterodyne measurements near the peak



of theFTS response, at 639 GHz. The frequency response measured with the FTS fits

quite well with our circuit calculation if we assume that the NbTiN films have essentially

no loss. Significant discrepancies arise between theory and experiment if the surface

resistance of the NbTiN film is assumed to be 0.1 B/square. We also deduce from our

circuit simulations a phase velocity of about 0.2 lc and a penetration depth on the order of

230 rim. For comparison, niobium films have a penetration depth of 80 nm. As an

interesting side note, the heterodyne result of 11OK at 639 GHz proved to be one of the

most sensitive un-corrected receiver measurements at this frequency to date. Clearly the

loss in the NbTiN ground layer is very low. A 9btm rnylar LO injection beamsplitter was

used during the duration of the heterodyne measurement.
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Fig. 2 FTS measurement of a Nb/AI-Ox/Nb junction with NTiN groundplane.
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Fig. 3 Heterodyne response of a Nb/Al-Ox/Nb junction with NTiN groundplane at 639 GHz.

Once an understanding of the phase velocity and penetration depth of the NbTiN films

was gained, we designed two different double slot antenna circuit layouts for further

experimentation.

The first design was for an all NbTiN device with a NbTiN/MgO/NbTiN junction, and

the second design was optimized for an Nb/AI-Ox/Nb junction. The difference being that,

according to our computer simulations to FTS fits, the specific capacitance of a MgO

barrier is on the order of 140-160 fF/p.m 2. Nb/AI-Ox/Nb junctions with similar current

density have a specific capacitance around 85 fF/l.tm 2.



The RF capacitive impedance of a 0.5 gm 2 NbTiN/MgO/NbTiN SIS junction at I THz is

less than 2 Ohm, which makes it very difficult to match. Due to its lower capacitance, AI-

Ox would be a preferred barrier except that we were not successful in fabricating high

quality NbTiN junctions with AI-Ox barriers. A third barrier was used, AI-Nx, which has

a reported specific capacitance similar to that of AI-Ox but is better suited to the

fabrication process. There are good indications that AI-N, has a lower barrier height than

AI-O_, and is thermally more stable.

III. NbTiN Ground Plane and Wiring, NbTiN/MgO/NbTiN Junction

As discussed, a 0.5gm 2 NbTiN/MgO/NbTiN SIS junction at 1 THz presents a mere 2

Ohm of reactance and the I/V characteristics are similar to the well known "'washed-out"

NbN I/V curves. Nonetheless, these devices are still of interest because of the relatively

high energy gap, (2A) = 1200 GHz, and low RF loss. To verify that these films do indeed

show improved performance over NbN devices, we have measured several of these

devices over a wide range of current densities. Figure 4 shows the FTS response with

three different circuit simulation fits for a junction with a RnA product of 42 fl-gm:.

Though the fits are not perfect, it does enable us to put a upper limit on the loss (0.03-

0.06f_/square), get an estimate for the junction capacitance ( 132fF/_tm: for a RnA product

of 42 f_-gm 2) and resistivity (60gf2-cm). We have also measured MgO devices with RnA

products as low as 8 and as high as 60 f_-lam _. The specific capacitance, according to

circuit simulations fits to the FTS data, for these particular device were 163 fF//am-" and

125 fF/gm 2 respectively.

The NbTiN/MgO/NbTiN SIS junction heterodyne measurement presented in Figure 5 has

a receiver noise temperature of 250K DSB. This is several factors better than results

reported with NbN devices at similar frequencies.
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Fig. 4 FTS response of an All NbTiN junction with MgO barrier.
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Fig. 5 Heterodyne response of an All NbTiNjunction with MgO barrier at 638 GHz.



IV. NbTiN/Nb Ground Plane, NbTiN Wiring, Nb/AI-Nx/NbTiN Junction

A promising technology for THz applications is the use of an Al-N× barrier rather than

MgO barrier. This should result in a reduced specific capacitance, making the 1_ match

to these evices at 1 TI-Iz more realistic. Josephson resonances in the I/V curve of many of

these devices show resonances up to 2.1 mV In Figure 6 we present a device that shows a

rather nice resonance at 800 GHz Unfortunately the I/V curve showed a weak-link break

around 5 mV, and no heterodyne data is available for this particular device. Note that the

junction gap voltage is at 3.5 mV. The devices discussed here were fabricated with a 100

Angstrom niobium layer on top of the NbTiN ground plane. This was done because

Aluminum can readily be deposited on top of a niobium base electrode, but not easily on

NbTiN. The sum gap of the 100 Angstrom niobium and NbTiN counter electrode is 3.5

mV as shown in Figure 6. Our calculations show that the absorption loss in the very thin

niobium film is significant enough to effect the RF performance above 700 GHz, the gap

frequency of niobium.

Fig. 6. Josephson resonance at 800 GHz ofa Nb/AI-N_/NbTiN junction

Horizontal scale: i mV/division, Vertical scale: 20gA/division



A newprocessis currentlyunderdevelopmentatJPLwhichwill etchcompletelythrough

the 100angstromniobium layeron topof theNbTiN baseelectrode,exceptfor wherethe

junction is patterned.ThisshouldsolvetheRF lossissuein theniobium film, yet still

allow goodquality IV curveswith gapvoltagesaround3.5mV. This technologyis

thereforeparticularlyinterestingfor THz applications.

RF circuit simulationsshowa3 dB bandwidthof about120GHz for thesedevices,which

is in good agreement with the measured FWHM bandwidth of 115 GHz on our FTS, The

small RF bandwidth is indicative of a low loss RF tuning circuit. In fact the 3 dB

bandwidth of a similar device with aluminum wiring is 450 GHz [3].
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junction with NbTiN groundplane and wire layers.



Since no more high quality 950 GHz devices were available for this fabrication run, we

turned our attention to a 650 GHz device. The direct detection response is shown in

Figure 8. The measurement was made at two different resolutions and it shows a

resonance that is shifted down from the 650 GHz design frequency to 590 GHz,

approximately 10%. Heterodyne measurements at 588 GHz gave a 195K DSB noise

temperature.

10

0.9

0.8

_a 0.7

O
_', 0.6

,._ 0.5

O4

O 0.3
Z

0.2

0.1

0.0
200

' ' ' ' 1 ' ' ' ' I ' ' ' ' I ' ' ' U_ 1 ' ' ' ' 1 _ ' ' _ 1 ....

J_nt_::08#xn2 _i\ ....... I_. 3.7 GI'_
R._ 6 Q_-//_ ., ':\ _ _. 7.6 GIa_

12: •

1_s--_-209_."DSB _J_g OFa .[ ':

I_---264KDSB _ 600GFa :/ i l

I_=333KDSB_ 6: [ :,:

126 GHz

300 400 500 600 700 800

Frequency (GHz)

g00

Fig 8 FFS response of an AI-Nx barrier junction designed to resonate
at 650 GHz. RnA=26f2-_m 2



v

03

03

3OO

250

200

150

100

50

0
0.0

''''1''' '1' '' '1''''1 ' ' ' '1 ' ' ''1 ''''1' '''1 ' '' '1'' ' '1'' ' ' I '''' tG'ltt._: - 9 ._"[" 1'_ C= ] 9_[{.I_D_B

Tif=6.9K ./A

-Tmax= 129K

650 GHzymetio,_ ,/ _ hot (295K)

-_'t.&=26, ]_._#'£,m=11 Rn=19.5 n

B. S: 12,5_"n ,.

j '.

• Ip=461._ ., - -" "

. lo=19_U_

• ..I .... I .... I .... I .... I .... ! .... 1 .... I .... I ....

05 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

,o .,

" " Pcold(80K) ,

2.2

Vsis (mY)

Fig 9 Heterodyne response if an AI-N, barrier junction at 588 GHz.

2.0

18

_.6 2

1.4
,.D

1.2 ,_./

i1)

1.0 _:
0

0.8
O

06

0.4

0.2

0.0
6.0

The standard IF shot noise calibration technique[4] gave a mixer noise temperature of

129K and a mixer gain of -9.6 dB. The mixer conversion loss is somewhat higher than

expected. The reason for this is not very clear since we are below the gap frequency of

niobium. However if the loss in the NbTiN tuning circuit were significant would have

expected a broadened RF response.

V. Conclusion

Clearly, our preliminary measurements demonstrate that NbTiN films show great promise

for use in low-loss tuning circuits for SIS mixers at 1 THz. However, much work remains

to be done to turn this promise into reality. Numerous technical difficulties must be



overcomebeforeastable,reproduciblefabricationprocessis available,which is

necessaryfor theproductionof optimizeddevices.Severaldifferentjunction

configurationsarecurrentlyunderinvestigationasit is notclear whichonewill perform

bestup to 1.2THz.

Newdeviceshaverecentlybecomeavailable,andweanticipatetestingthemat 800GHz

in thevery nearfuture.
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